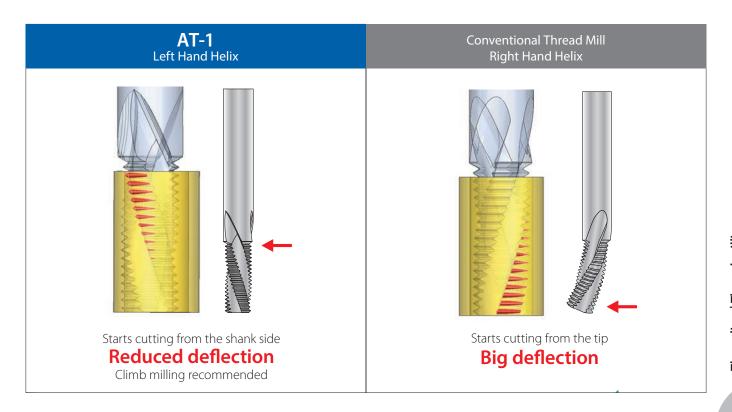
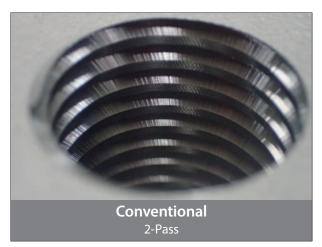


One Pass Thread Mill


AT-1 Volume 3


The secret to 1-pass cutting

Evolution from conventional 2-pass cutting to 1-pass cutting by preventing bending, reducing cutting time.

High quality internal threading

Size	Ø19,7 × 54 P3 6F				
Work Material	SUS304				
Cutting Speed	40 m/min (646min ⁻¹)				
Feed	14 mm/min (0,02mm/t)				
Internal Thread Size	M24 x 3				
Tapping length	45 mm				
Coolant	Water-Soluble				
Machine	Horizontal Machining Center				

Type 2

- First choice in quality and performance
- One pass thread mill
- EgiAs coating
- Milling for internal thread

80-160

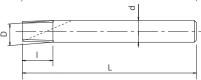


EDP	Min. cutting bore ⊗	Р	D	L	1	I1	d	Z	Туре	Price
8331000	M6	0,75	4,5	75	13,5	16	6	4	1	
8331001	M6	1	4,5	75	14	16	6	4	1	
8331002	M8	0,5	5,7	75	17	-	6	4	2	
8331003	M8	1	5,7	75	18	-	6	4	2	
8331004	M8	1,25	5,7	75	18,75	-	6	4	2	
8331005	M10	1	7,7	85	22	-	8	4	2	
8331006	M10	1,25	7,7	85	22,5	-	8	4	2	
8331007	M10	1,5	7,7	85	24	-	8	4	2	
8331008	M12	1	9,7	100	26	-	10	5	2	
8331009	M12	1,25	9,7	100	27,5	-	10	5	2	
8331010	M12	1,5	9,7	100	27	-	10	5	2	
8331011	M12	1,75	9,7	100	28	-	10	5	2	
8331012	M14	0,5	11,7	120	29	-	12	5	2	
8331013	M14	0,75	11,7	120	30	-	12	5	2	
8331014	M14	1	11,7	120	30	-	12	5	2	
8331015	M14	1,5	10,7	120	31,5	34,5	12	5	1	
8331016	M14	2	9,7	100	32	-	10	5	2	
8331017	M16	1	13,7	135	34	39	16	5	1	
8331018	M16	1,5	13,7	135	36	39	16	5	1	
8331019	M16	2	11,7	120	36	-	12	5	2	
8331020	M18	2,5	11,7	120	42,5	-	12	5	2	
8331021	M20	1,5	15,7	135	43,5	-	16	5	2	
8331022	M20	2,5	13,7	135	45	50	16	5	1	
8331023	M24	1,5	19,7	150	51	-	20	6	2	
8331024	M24	2	19,7	150	52	-	20	6	2	
8331025	M24	3	19,7	150	54	-	20	6	2	

Metric & Metric Fine

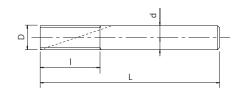
Threading | Thread milling | U UNJ UNC UNJC UNF UNJF

- First choice in quality and performance
- One pass thread mill
- EgiAs coating
- Milling for internal thread



A	U	UNJ	UNC	UNJC	UNF	UNJF	CARBIDE	EgiAs	9°~13°	h6	

EDP	Min. cutting bore ⊗	TPI	D	L	1	l1	d	Z	Type	Price
8331026	1/4	20	4,55	75	15,24	17,78	6	4	1	
8331027	1/4	28	4,55	75	15,42	17,23	6	4	1	
8331028	5/16	18	5,7	75	19,75	-	6	4	2	
8331029	5/16	24	5,7	75	19,04	-	6	4	2	
8331030	5/16	32	5,7	75	17,47	-	6	4	2	
8331031	3/8	16	6,7	85	22,23	25,41	8	4	1	
8331032	3/8	24	6,7	85	22,22	24,33	8	4	1	
8331033	3/8	32	6,7	85	20,64	22,23	8	4	1	
8331034	7/16	14	7,7	85	27,21	-	8	4	2	
8331035	7/16	20	7,7	85	25,40	-	8	4	2	
8331036	1/2	13	8,7	100	29,31	33,22	10	5	1	
8331037	1/2	20	8,7	100	27,94	30,48	10	5	1	
8331038	1/2	28	8,7	100	28,12	29,93	10	5	1	
8331039	9/16	12	9,7	100	33,87	-	10	5	2	
8331040	9/16	18	9,7	100	32,45	-	10	5	2	
8331041	5/8	11	10,7	120	36,94	41,56	12	5	1	
8331042	5/8	18	10,7	120	35,28	38,10	12	5	1	
8331043	5/8	24	10,7	120	34,91	37,03	12	5	1	
8331044	3/4	10	11,7	120	43,18	-	12	5	2	
8331045	3/4	16	11,7	120	41,29	-	12	5	2	
8331046	7/8	9	13,7	135	50,80	56,44	16	5	1	
8331047	7/8	14	13,7	135	48,98	52,61	16	5	1	
8331048	1	8	18,7	150	57,15	63,50	20	6	1	
8331049	1	20	18,7	150	53,34	55,88	20	6	1	
0331049		20	10,/	150	55,54	33,00	20	0	'	


page 16

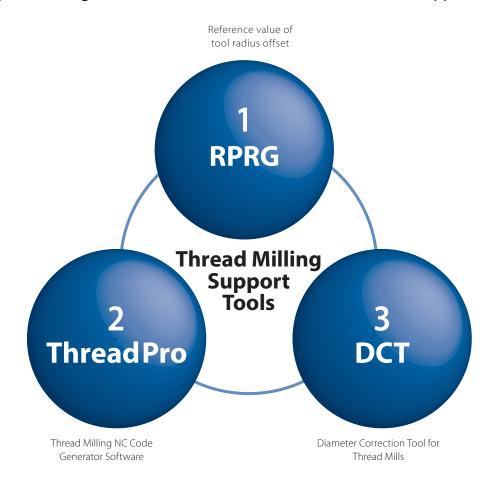
Type 2

- First choice in quality and performance
- One pass thread mill
- EgiAs coating
- Milling for internal thread

Type 3

EDP	Range of thread size ∞	TPI	D	L	1	l1	d	Z	Туре	Price
8331075	1/16 1/8	28	5,67	60	9,1	-	6	4	2	
8331076	1/8	28	7,67	60	9,1	12,7	8	4	1	
8331077	1/4 3/8	19	9,67	75	14,7	-	10	5	2	
8331078	3/8	19	11,67	85	14,7	20	12	5	1	
8331079	1/2 3/4	14	11,67	85	20	-	12	5	2	
8331080	3/4	14	15,67	95	20	-	16	5	2	
8331081	1 ~ 2	11	19,67	105	27,7	-	20	6	2	

EDP	Range of thread size ⊗	TPI	D	L	1	l1	d	z	Туре	Price
8331082	1/16 1/8	28	5,67	60	11,8	-	6	4	3	
8331083	1/8	28	7,67	65	14,5	-	8	4	3	
8331084	1/4 3/8	19	9,67	80	20,1	-	10	5	3	
8331085	3/8	19	11,67	100	25,4	-	12	5	3	
8331086	1/2 7/8	14	11,67	100	32,7	-	12	5	3	
8331087	3/4 7/8	14	15,67	115	39,9	-	16	5	3	
8331088	1 ~ 2	11	19,67	130	50,8	-	20	6	3	

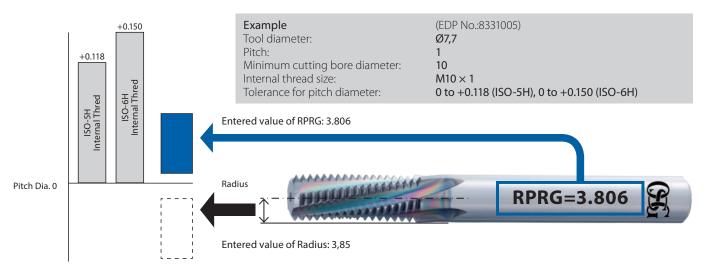


h6
110

8331089 1/16 1/8 27 5,67 60 10,35 - 6 4 2 8331090 1/8 27 7,67 60 10,35 - 8 4 2 8331091 1/4 3/8 18 9,67 75 15,52 - 10 5 2 8331092 3/8 18 11,67 85 15,52 - 12 5 2 8331093 1/2 3/4 14 15,67 95 19,96 - 16 5 2 8331094 1 ~ 2 11,5 18,72 105 24,3 28,7 20 6 1	EDP	Range of thread size ∞	TPI	D	L	I	l1	d	Z	Туре	Price
8331091 1/4 3/8 18 9,67 75 15,52 - 10 5 2 8331092 3/8 18 11,67 85 15,52 - 12 5 2 8331093 1/2 3/4 14 15,67 95 19,96 - 16 5 2	8331089	1/16 1/8	27	5,67	60	10,35	-	6	4	2	
8331092 3/8 18 11,67 85 15,52 - 12 5 2 8331093 1/2 3/4 14 15,67 95 19,96 - 16 5 2	8331090	1/8	27	7,67	60	10,35	-	8	4	2	
8331093 1/2 3/4 14 15,67 95 19,96 - 16 5 2	8331091	1/4 3/8	18	9,67	75	15,52	-	10	5	2	
·	8331092	3/8	18	11,67	85	15,52	-	12	5	2	
8331094 1~2 11,5 18,72 105 24,3 28,7 20 6 1	8331093	1/2 3/4	14	15,67	95	19,96	-	16	5	2	
	8331094	1 ~ 2	11,5	18,72	105	24,3	28,7	20	6	1	

R (PT), Rc (PT), Rp (PS), G (PF), NPT

Reduce setup, machining time, and achieve stable tool life with these 3 support tools.



Recommended work materials

	Material	AT-1	WX-PNC	WXO-ST-PNC	WH-VM-PNC WX-ST-PNC-3P ←	WH-EM-PNC
	Steel (C:≤0,2%)	•	0	0	0	
D	Steel (C:0,25~0,45%)	•	0	•	0	
Р	Steel (C:≥0,45%)	•	0	•	0	0
	Alloy Steel (SCM)	•	0	•	0	0
M	Stainless Steel (INOX)	•	0	0	0	
K	Cast Iron (GG)	•	0	0	0	
K	Cast Iron (GGG)	•	0	0	0	
N	Aluminium	•	0	0	0	
IN	Aluminium Alloy	•	0	0	0	
S	Titanium (Ti)		•		•	0
3	Nickel Alloy (Ni)		•		•	0
	25~35 HRC	•	0	•	•	•
н	35~45 HRC	•	0	•	•	•
-	45~52 HRC					•
	52~62 HRC					0

Use RPRG to reduce the workload. RPRG is the reference value of tool radius offset.

Notes

- 1. RPRG are reference values. Optimal values for actual cutting depend on the machining environment. Determine optimal values after trial cutting.
- 2. RPRG values are optimally established to achieve ISO:5H (formerly Grade 1) internal thread limits for metric threads and ANSI:3B internal thread limits for unified threads. RPRG values established for taper pipes (R/Rc) are effective when using the thread milling NC code generator software ThreadPro available on our website.
- 3. For diameters of thread mills, RPRG values are calculated based on the minimum cutting bore diameter (the minimum cutting internal thread size of the tool diameter). To cut other diameters, it is necessary to use a smaller value than RPRG.

2 Revamped Thread Milling NC Code Generator Software "ThreadPro"

Create machining programs at ease with OSG's revamped NC code generator software ThreadPro.

Achieve stable tool life with the DCT for accurate diameter measurement

The internal thread effective diameter, which used to be difficult to determine, can now be measured with readable values.

Troubled by the following problems?

Unsure of diameter correction value. Increase passes which results in longer setup time.

An incorrect diameter correction that result in a defective internal thread (gauge-out).

Unstable tool life

Solved with the Diameter Correction Tool **DCT**

Simple measurement of pitch diameter by visual judgment

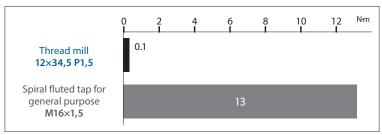
Visibility of internal thread pitch diameter at entry enables the reduction of passes to minimize setup time significantly.

Moreover, the DCT is able to measure pitch diameter smaller than the tolerance limit. The DCT can measure the pitch diameter of the female internal thread even if it does not fit into the Go-Gauge.

Visibility of internal thread pitch diameter at entry enables reliable diameter corrections.

The DCT is useful for reducing defective workpieces.

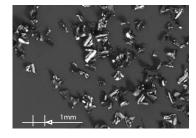
Digitized measurement ensures consistent internal thread pitch diameters after tool changes. The same starting and finishing position ensures consistent and stable tool life.

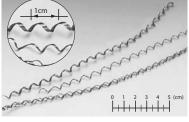

A single tool cuts various sizes of diameters

A single tool can cut different threads such as M10 \times 1.5, M12 \times 1.5, and M16 \times 1.5 if their pitch is the same.

Cuts large-diameter threads on low-power machine

The internal thread effective diameter, which used to be difficult to determine, can now be

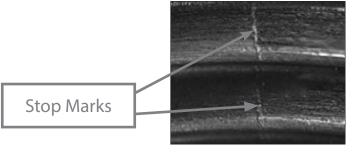

measured with readable values.

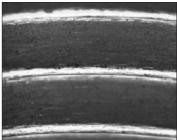


Smooth handling of chips to reduce problems

Thread mills break chips into small pieces and eject them smoothly, ensuring stable, problem-

free thread cutting.




Thread mill chips Material S45C

Spiral fluted tap chips

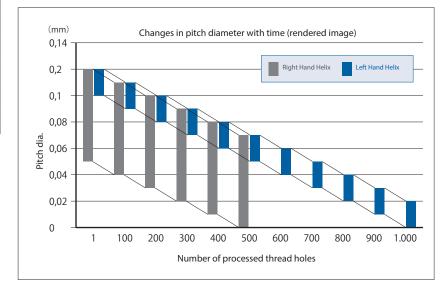
High-precision taper pipe threading (no stop marks)

Airtight threads by having no stop marks.

Thread cutting in drill holes with little allowance

Thread milling cuts the thread closer to the bottom of a hole than tapping, leaving only one incomplete crest of thread

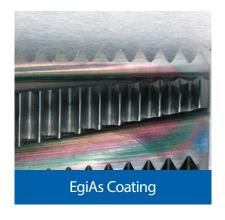
Effects of left-hand helix


Comparison of differences in internal thread pitch diameter at initial cutting stage.

Size	Ø7,7 × 22 P1 4F
Work Material	SCM440 (30 HRC)
Cutting Speed	100 m/min (4.136min ⁻¹)
Feed	380 mm/min (0,1mm/t)
Internal Thread Size	M10 x 1 mm
Drill Hole Size	Ø9 × 18 mm (Through)
Threading Length	15 mm
Machining Method	Climb milling 1-Pass
Coolant	Water-Soluble
Machine	Vertical Machining Center

The left-hand helix's small pitch diameter difference between the hole entry and inner hole allows a delay in gauge-out failure. Moreover, longer tool life can be achieved with "zero cutting" for correcting bending being eliminated.

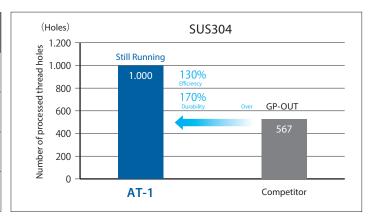
	Hole Entry	Inner Hole Area	Dia. Difference
Right Hand Helix	+0,120 ~ +0,140	+0,040 ~ +0,060	0,060 ~ 0,100
Left Hand Helix	+0,120 ~ +0,140	+0,120 ~ +0,140	0~+0,020


Pitch diameter measurement method: Step gauge

Effects of EgiAs coating

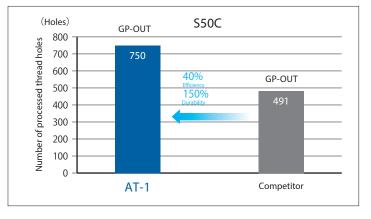
Cutting edge after threading 2.000 holes.

Ø7,7 × 22 P1 4F
SCM440 (30 HRC)
100 m/min (4.136min ⁻¹)
380 mm/min (0,1mm/t)
M10 x 1 mm
Ø9 × 18 mm (Through)
15 mm
Water-Soluble
Vertical Machining Center

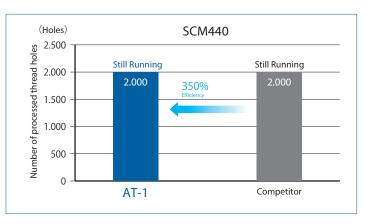

Work materials 1 to 2 are machined under the conditions shown below.

Internal Thread Size	M10 x 1 mm
Drill Hole Size	Ø9 × 25 mm (Blind)
Threading Length	19 mm
Coolant	Water-Soluble
Machine	Vertical Machining Center

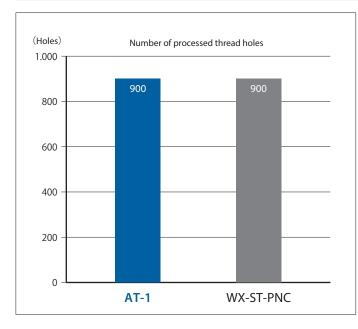
- 1. Internal thread pitch diameter difference between hole entry and inner hole area: 20µm or less
 - Eg: +0.080 step gauge passes completely, +0.100 step gauge stops less than or equal to one revolution.
- 2. Fastest cutting condition (including number of passes) while fulfilling the requirement of Condition 1.

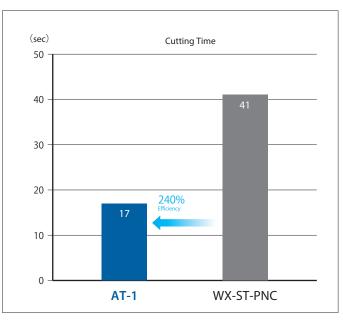

• Machining SUS304

Tool	AT-1 Ø7,7×22 P1 4F	Competitor
Cutting Speed	120m/min (4.961min ⁻¹)	140m/min (5.122min ⁻¹)
Feed	228mm/min (0,05mm/t)	200mm/min (0,1mm/t)
Number of Passes	1-Pass	2-Passes
Cutting Time	2,26 sec	3,03 sec

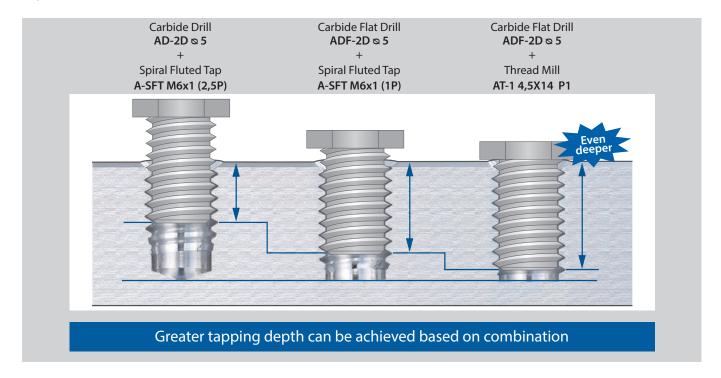

Machining S50C

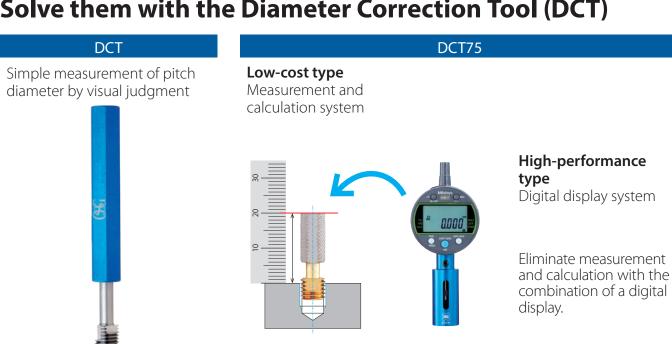
Tool	AT-1 Ø7,7×22 P1 4F	Competitor
Cutting Speed	160m/min (6.614min ⁻¹)	140m/min (5.122min ⁻¹)
Feed	122mm/min (0,02mm/t)	200mm/min (0,1mm/t)
Number of Passes	1-Pass	3-Passes
Cutting Time	4,28 sec	45,4 sec


Machining SCM440


Tool	AT-1 Ø7,7×22 P1 4F	Competitor
Cutting Speed	80m/min (3.307min ⁻¹)	140m/min (5.122min ⁻¹)
Feed	30mm/min (0,01mm/t)	200mm/min (0,1mm/t)
Number of Passes	1-Pass	4-Passes
Cutting Time	17,12 sec	60,54 sec

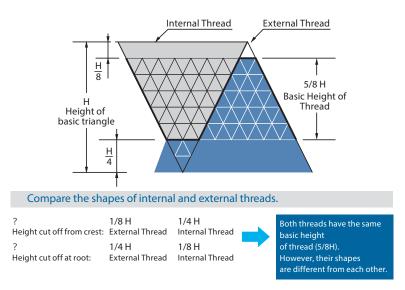
SUS304 durability test result


Tool	AT-1 Ø9,7×27 P1,5 5F	WX-ST-PNC Ø9,5×22,5 P1,5			
Work Material	SUS	304			
Cutting Speed	100m/min (3.283min ⁻¹)	120m/min (4.021min ⁻¹)			
Feed	12,5mm/min (0,01mm/t)	42mm/min (0,01mm/t)			
Internal Thread Size	M12 x 1,5				
Drill Hole Size	Ø10,5 × 25 mm (Through)				
Threading Length	22,5 mm				
Coolant	Water-Soluble				
Machine	Vertical Machining Center				
Number of Passes	1-Pass	2-Passes			



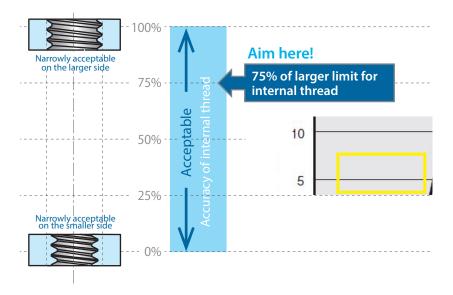
Machining Tips

Taps and drill combination


Solve them with the Diameter Correction Tool (DCT)

Q&A FAQ ABOUT THREAD MILLING

Why internal thread cutting tools cannot be used to cut external threads?


Metric and unified threads have different thread profiles between internal and external threads. For these threads, internal thread cutting tools cannot be used to cut external threads because in their basic thread profiles, the crest and root shapes are not uniform. However, for pipe threads, which have uniform crests and roots, thread cutting tools can be shared for internal and external thread cutting.

Example of basic thread profile (metric thread)

What does the number "75" under "Fit %" mean, which is displayed on the data entry screen of ThreadPro?

It means to aim at the acceptable range of threads. Default values are 75% (larger side) for internal threads and 25% (smaller side) for external threads in light of their engagement. You can change these to your desired values.

Is ThreadPro compatible with NC programs developed for custom-made thread mills?

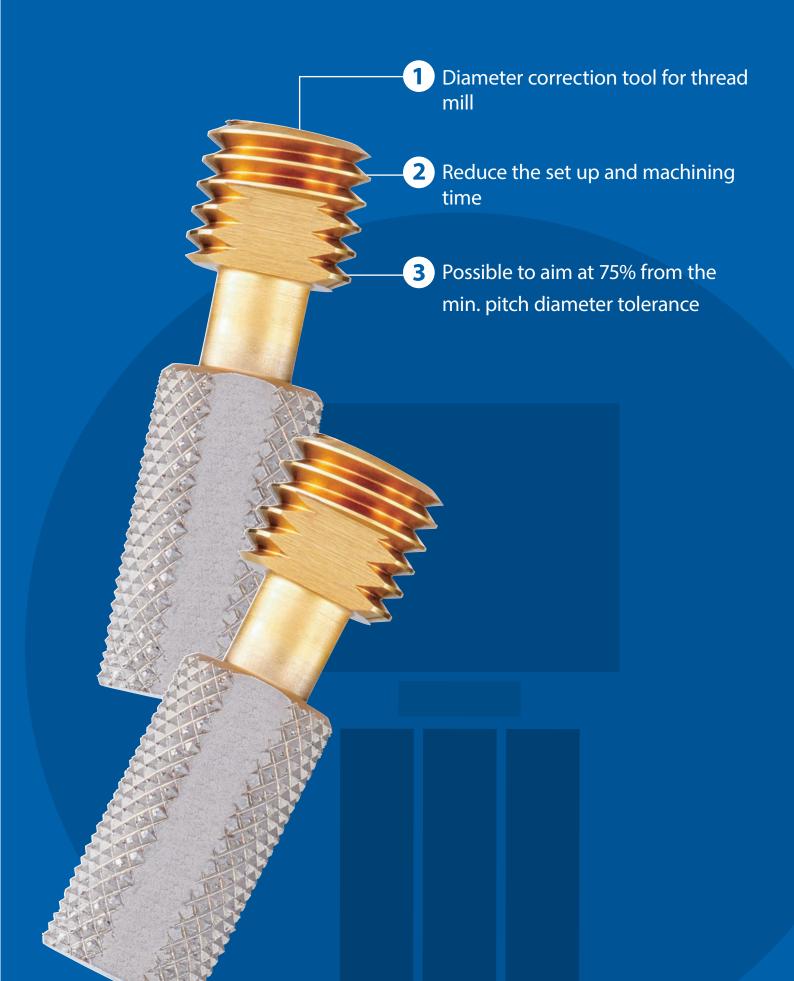
Yes, please consult our sales representatives.

CUTTING CONDITIONS

Threading | Thread milling | Cutting conditions

AT-1

Work Material		Vc (m/min)	F (mm/tooth)
Low Tensile Strength Steel	C~0,25%	80~160	0,01~0,05
Medium Tensile Strength Steel	C~0,25% ~ 0,45%	80~160	0,01~0,05
High Tensile Strength Steel	C0,45%~	80~160	0,01~0,05
Alloy Steel	SCM	60~120	0,01~0,05
	25~45 HRC	80~200	0,01~0,05
Hardened Steel	45~55 HRC	-	-
	50~60 HRC	-	-
Stainless Steel	SUS	60~120	0,01~0,05
Tool Steel	SKD	-	-
Cast Steel	SC	60~120	0,01~0,05
Cast Iron	FC	80~160	0,01~0,05
Ductile Cast Iron	FCD	60~120	0,01~0,05
Copper	Cu	80~160	0,03~0,1
Brass	Bs	80~160	0,03~0,1
Brass Casting	BsC	80~160	0,03~0,1
Bronze	PB	80~160	0,03~0,1
Alumunium Rolled Steel	AL	80~160	0,03~0,1
Aluminium Alloy Casting	AC, ADC	100~300	0,05~0,2
Magnesium Alloy Casting	MC	100~300	0,05~0,2
Zinc Alloy Casting	ZDC	100~300	0,05~0,2
Titanium Alloys	Ti-6AL-4V	-	-
Nickel Alloys	Inconel®	-	-
Thermosetting plastic	-	80~160	0,03~0,1
Thermoplastic	-	80~160	0,03~0,1


- 1. The indicated speeds and feeds are for water-soluble oil.

- Water-soluble oil is not suitable for tapping magnesium alloy.
 Please adjust the cutting conditions depending on the rigidity of machine, tool holders, and workpiece clamping.
 If the tapping length is long, or when machining a large-pitch thread, select a smaller feed rate and separate the machining process into a few segments.
 If a machined parallel internal thread is tapered and prevents the go-gauge from going through, add a zero cut (finish machining).

Formula for calculating the feed rate of thread mill

Feed (mm/min) **Number of Flutes** $V_{\rm f}$ $\frac{f \times z \times n \times (D_{\text{m}} \pm D_{\text{c}})}{D_{\text{m}}}$ Actual Dia. (mm) Feed (mm/t) (mm/min) Tool Dia. (mm) Speed (min⁻¹) Note Internal: -External: +

For the arc cutting process of machining external and internal threads, the feed rate at the tool center can be obtained by multiplying the linear cut feed rate with a coefficient. The formulas for calculating coefficients vary between external and internal thread cutting. The formula listed left are for calculating the tool feed rate during arc-cutting, including calculating the coefficients to be used for multiplication with the linear-cut feed rate.

DCT75 NEW

Threading | Measuring | M(J)

- Diameter correction tool for thread mill
- Reduce the set up and machining time
- Possible to aim at 75% from the min. pitch diameter tolerance

EDP	Thread size	Thread length	d	Taper	Applicable Recommended Height Master
9342019*	M6 X 1	6,2	∞ 10	1/25	8
9342020*	M8 X 1,25	7,3	∞ 10	1/25	8
9342021*	M8 X 1	6,2	∞ 10	1/25	(8)
9342022*	M10 X 1,5	8,3	∞ 10	1/25	7)
9342023*	M10 X 1,25	7,3	∞ 10	1/25	(7)
9342024*	M10 X 1	6,2	∞ 10	1/25	(i) (i) (i) (ii)
9342025*	M12 X 1,75	9,7	№ 12	1/25	(2)
9342026*	M14 X 1,50	8,7	№ 14	1/25	(7)
9342027*	M16 X 1,5	8,7	№ 16	1/25	7

Threading | Measuring | U, UNJ

- Diameter correction tool for thread mill
- Reduce the set up and machining time
- Possible to aim at 75% from the min. pitch diameter tolerance

UNC

UNF

UNEF

Applicable Recommend Height Master	Taper	d	Thread length	Thread size	EDP
8	1/25	∞ 10	7	1/4 - 20 UNC	9342028*
8	1/25	∞ 10	5	1/4 - 28 UNF	9342029*
8	1/25	© 10	7	5/16 - 18 UNC	9342030*
8	1/25	∞ 10	7	5/16 - 24 UNF	9342031*
8	1/25	© 10	5	5/16 32 UNEF	9342032*
<u></u>	1/25	© 10	8,8	3/8 - 16 UNC	9342033*
0	1/25	∞ 10	7	3/8 - 24 UNF	9342034*
①	1/25	© 12	10	7/16 14 UNC	9342035*
Ő	1/25	© 12	7	7/16 - 20 UNF	9342036*
0	1/25	© 13	10,8	1/2 13 - UNC	9342037*
<u> </u>	1/25	© 13	7	1/2 - 20 UNF	9342038*
	1/23	Q 13	,	1/2 - 20 ONF	9342036

DCT75 NEW

Threading | Measuring | R(PT)

- Diameter correction tool for thread mill
- Reduce the set up and machining time
- Possible to aim at 75% from the min. pitch diameter tolerance

EDP	Thread size	Thread length	d	Taper	Applicable Recommended Height Master
9342039*	R (PT) 1/16 R (PT) 1/8 R (PT) 1/4 R (PT) 3/8	6,01	∞ 10	1/16	(9) (9) (9) (9)
9342040*	R (PT) 1/8	6.01	№ 10	1/16	<u>.</u>
9342041*	R (PT) 1/4	6,01 9,02	№ 14	1/16	9
9342042*	R (PT) 3/8	9,36	© 17	1/16 1/16	9
7542042	11 (1 1 / 5/0	7,50	Q 17	1/10	
				* DI I	when the DCT75 and the height words are

DCT75 DIGITAL INDICATOR

Threading | Measuring

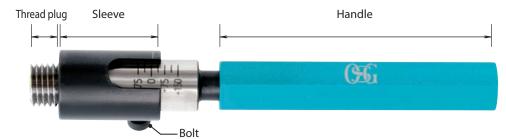
- High performance type
- Digital display system
- Eliminate measurement and calculation with a digital display

EDP	Application size	Sleeve dia	Sleeve hole dia	Application Tapper
9342052*	M6 ~ M16 U1/4~1/2	∞ 23,5	№ 17,5	1/25
9342053*	R (PT) 1/16 ~ 3/8	∞ 23,5	№ 17,5	1/16

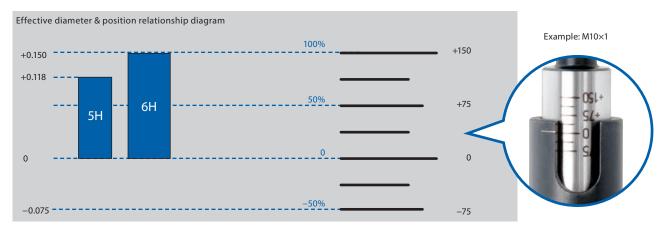
^{*} Please be sure to purchase the DCT75 and the height master as a set.

DCT75 HEIGHT MASTER

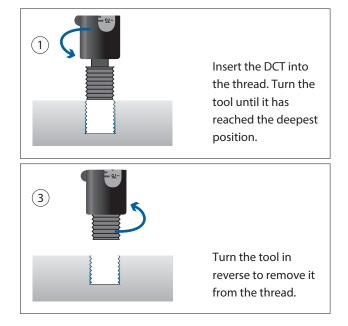
Threading | Measuring

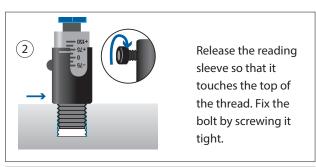

	EDP	Size
1	9342043*	28
2	9342044*	28,25
3	9342045*	28,5
4	9342046*	28,75
(5)	9342047*	29
6	9342048*	29,25
7	9342049*	29,5
8	9342050*	29,75
9	9342051*	30

Key features & benefits DCT


Reduce setup & machining time

The internal thread effective diameter, which used to be difficult to determine, can now be measured with readable values.




Scale sleeve

The DCT is made up of three components – the thread plug, scale sleeve and bolt for fixing the position. Measurable range from $100\% \sim -50\%$ tolerance of thread size (6H); with 7 positions on the reading scale.

Measuring method

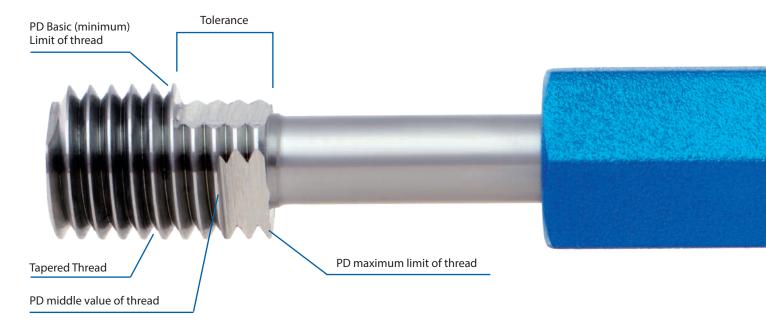
- * The reading value should be used as reference only. To inspect the screw thread please use the limit gauge (refer to p.6).
- * Depending on work environment this product may not be applicable.

Threading | Measuring | Metric

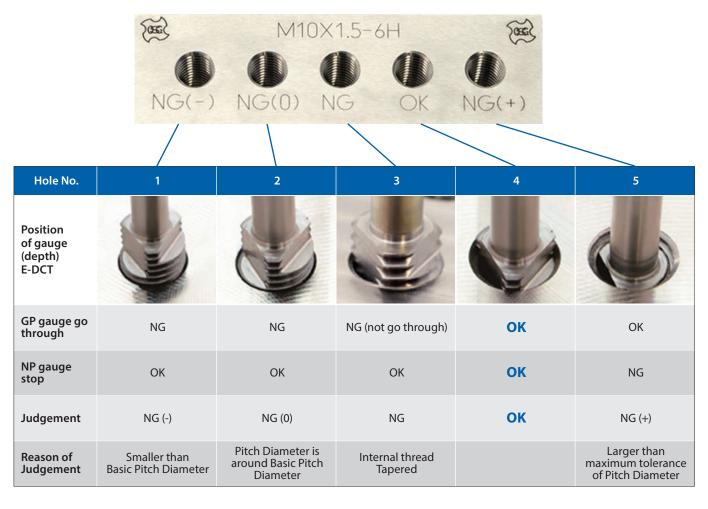
- Diameter correction tool for thread mill
- Reduce the set up and machining time
- \blacksquare Measurable range 100% ~-50% tolerance of thread size 6H

EDP	Thread size	Measurable depth (mm) in Blind Hole	Sleeve diameter
9342000	M6 X 1 -1,5 D	9~	Ø13
9342001	M8 X 1,25-1,5 D	12~	Ø13
9342002	M8 X 1 -1,5 D	12~	Ø13
9342003	M10 X 1,5 -1,2 D	12~	Ø15
9342004	M10 X 1 -1,2 D	12~	Ø15
9342005	M12 X 1,75 -1,2 D	14.4~	Ø17
9342006	M12 X 1,5 -1,2 D	14.4~	Ø17
9342007	M12 X 1,25 -1,2 D	14.4~	Ø17
9342008	M14 X 2 -1,2 D	16.8~	Ø19
9342009	M14 X 1,5 -1,2 D	16.8~	Ø19
9342010	M14 X 1 -1,2 D	16.8~	Ø19
9342011	M16 X 2 -1 D	16~	Ø21
9342012	M16 X 1,5 -1 D	16~	Ø21
9342013	M18 X 2,5 -1 D	18~	Ø23
9342014	M18 X 1,5 -1 D	18~	Ø23
9342015	M20 X 2,5 -1 D	20~	Ø25
9342016	M20 X 1,5 -1 D	20~	Ø25
9342017	M24 X 3 -1 D	24~	Ø29
3342017	WIZT NO TO	27	<i>902</i> 7

Threading | Measuring | UNJF



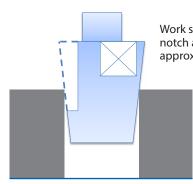
- Diameter correction tool for thread mill
- Reduce the set up and machining time
- Measurable range 100% ~-50% tolerance of thread size 3B


EDP	Thread size	Measurable depth (mm) in Blind Hole	Sleeve diameter
9342018	5/16 - 24UNJF- 1,5 D	11,9~	Ø13

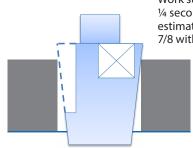
E-DCT Specification

Judgement of internal thread with E-DCT


1. Estimate the PD by position of the notches



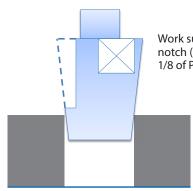
1.1 Work surface is between 1st notch and 2nd notch


Work surface is between 1st notch and 2nd notch, which is approx. ¼ of PD tolerance.

Example: M10X1.5 6H Tolerance 9.026 +0.180 / 0 +0.180X 1/4 =+0.045

PD of the thread is about +0.045

1.2 Work surface is between 2nd notch and 3rd notch


Work surface is at upper position about ¼ second and third notch. Soof you can estimate PD is about 7/8 within tolerance.

Example: M10X1.5 6H Tolerance 9.026 +0.180 / 0 +0.180X 7/8 =+0.158

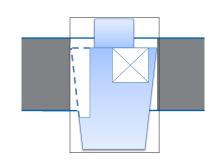
PD of the thread is about +0.160

1.3 Work surface is below the first notch (minimum limit)

Work surface is below the first notch (Bottom Limit), about 1/8 of PD tolerance.

Example: M10X1.5 6H Tolerance 9.026 +0.180 / 0 +0.180X -1/8=-0.023

PD of the thread is about -0.020. (Not pass for small PD)


1.4 Work surface is over the 3rd notch (maximum limit)

Work surface is over the 3rd notch (maximum Limit), about 1/8 of PD tolerance.

Example: M10X1.5 6H Tolerance 9.026 +0.180 / 0 +0.180X +9/8= +0.203

PD of the thread is about +0.203. (Not pass for large PD)

How to calculate the correction value?

- 1) After threadmilling inspect the female thread with a plug gauge GP-NP.
- 2) After process 1), inspect position of pitch diameter with "E-DCT"
- 3) Notch ① indicates the tolerance of the pitch diameter. Notch ② indicates medium value of tolerance and over.

E-DCT shows pitch diameter value is around 0 in the below photo.

Ex) M10X1.5-6H Tolerance of pitch diameter is 0.180 pitch diameter value is around 0 as show on left photo. If target value is 75% of tolerance, threadmill should rotate larger.

Correction value should be

- Based on diameter =0.180x75%=0.135
- Based on semi-diameter = 0.135/2 = 0.068

Tolerance of pitch diameter is marked on shank of E-DCT. Tolerance of pitch diameter x ratio of notch(%) = correction value.

Threading | Measuring | M(J)

- Diameter correction tool for thread mill
- Reduce the set up and machining time

M MJ ISO 2 6H

EDP

For 6H

Price

G1609311	M(J)3	Х		
G1609312	M(J)4	Х	0,7	
G1609313	M(J)5	Х		
G1609314	M(J)6	Х	1	
G1609317	M(L)M	Х		
G1609322	M(J)10	Х	1,5	
G1609323	M(J)10	Х		
G1609325	M(J)12	Х		
G1609326	M(J)12	Х		
G1609327	M(J)12	Х	1,25	
G1609329	M(J)14	Х		
G1609330	M(J)14	Х	1,5	
G1609334	M(J)16	Х		
G1609335	M(J)16	Х	1,5	
G1609339	M(J)20	Х	2,5 1,5	
G1609340	M(J)20	Х	1,5	

Thread size

E-DCT

Threading | Measuring | UNJC | UNJF

- Diameter correction tool for thread mill
- Reduce the set up and machining time

For 3B

EDP	Thread size	Price
G1609623	1/4 - 20 UN	(J)C
G1609624	1/4 - 28 UN	(J)F
G1609625	5/16 - 18 UN	(J)C
G1609626	5/16 - 24 UN	(J)F
G1609627	3/8 - 16 UN	(J)C
G1609628	3/8 - 24 UN	(J)F
G1609631	1/2 - 13 UN	(J)C
G1609632	1/2 - 20 UN	(J)F
G1609635	5/8 - 11 UN	(J)C
G1609636	5/8 - 18 UN	(J)F
G1609638	3/4 - 16 UN	(J)F

For EG-3B Helicoil

EDP	Thread size	Price
G1609723	1/4 - 20 UN(J)C	
G1609724	1/4 - 28 UN(J)F	
G1609726	5/16 - 24 UN(J)F	
G1609728	3/8 - 24 UN(J)F	
G1609731	1/2 - 13 UN(J)C	
G1609732	1/2 - 20 UN(J)F	
G1609736	5/8 - 18 UN(J)F	
G1609738	3/4 - 16 UN(J)F	

OSG EUROPE LOGISTICS

Avenue Lavoisier 1 B-1300 Z.I. Wavre - Nord - Belgium Tel: +32 10 23 05 07 Fax: +32 10 23 05 51 info@osgeurope.com

OSG BELUX

Avenue Lavoisier 1 B-1300 Z.I. Wavre - Nord - Belgium Tel: +32 10 23 05 11 Fax: +32 10 23 05 31 info@osg-belgium.com

OSG FRANCE

Parc Icade, Paris Nord 2 Immeuble "Le Rimbaud" 22 Avenue des Nations CS66191 - 93420 Villepinte - France Tel: +33 1 49 90 10 10 Fax: +33 1 49 90 10 15 sales@osg-france.com

OSG NETHERLANDS

Bedrijfsweg 5 - 3481 MG Harmelen Tel: +31 348 44 2764 Fax: +31 348 44 2144 info@osg-nl.com

OSG UK

Shelton house, 5 Bentalls Pipps Hill Ind Est, Basildon Essex SS14 3BY Tel: +44 1268 567 660 Fax: +44 1268 567 661 sales@osg-uk.com

CZECH, SLOVAKIA, HUNGARY

OSG Europe Logistics S.A. Slovakia organizacna zlozka Racianská 22/A, SK-83102 Bratislava Slovakia Tel. +421 24 32 91 295 Orders-osgsvk@osgeurope.com

OSG POLAND Sp. z.o.o.

Spółdzielcza 57 05-074 Halinów - Poland Tel: +22 760 82 71 Fax: +22 760 82 71 osg@osg-poland.com

OSG GERMANY

Karl-Ehmann-Str. 25 D - 73037 Göppingen - Germany Tel: +49 7161 6064 - 0 Fax: +49 7161 6064 - 444 info@osg-germany.de

OSG SCANDINAVIA

(For Scandinavian countries) Langebjergvaenget 16 4000 Roskilde - Denmark Tel: +45 46 75 65 55 Fax: +45 46 75 67 00 osg@osg-scandinavia.com

SWEDEN

Branch office of OSG SCANDINAVIA Abrahams Gränd 8 295 35 Bromölla - Sweden Tel: +46 40 41 22 55 Fax: +46 40 41 32 55 osg@osg-scandinavia.com

OSG IBERICA

Bekolarra 4 E - 01010 Vitoria-Gasteiz - Spain Tel: +34 945 242 400 Fax: +34 945 228 883 osg.iberica@osg-ib.com

RUSSIA

Butlerova street, 17B, office 5069 117342 Moscow - Russia Tel: +7 (495) 150 41 54 info@osg-russia.com

OSG TURKEY

Rami Kişla Cad.No:56 Eyüp Istanbul 34056 - Turkey Tel+90 212 565 24 00 Fax: +90 212 565 44 00 info@osg-turkey.com

ROMSAN INTERNATIONAL CO. SRL

Reprezentant Exclusiv OSG 25C, Bucuresti-Magurele Street 051431 Bucuresti - România Tel: +40 21 322 07 47 Fax: +40 21 321 56 00 romsan.int@romsan.ro

AUSTRIA

Branch office of OSG GERMANY Messestraße 11 A-6850 Dornbirn Tel: +49 7161 6064-0 Fax: +49 7161 6064-444 info@osg-germany.de

OSG ITALIA

Via Cirenaica n. 52 int. 61/63 I - 10142 Torino - Italy Tel: +39 0117705211 Fax: +39 0117705215 info@osg-italia.it

Vischer & Bolli AG

Machining and Workholding Im Schossacher 17 CH-8600 Dübendorf T +41 44 802 15 15 F +41 44 802 15 95 info@vb-tools.com

OSG EUROPE LOGISTICS S.A.

11/2019 - All rights reserved. $\ensuremath{\texttt{©}}$ OSG Europe 2019.

The contents of this catalogue are provided to you for viewing only. They are not intended for reproduction either in part or in whole in this or other medium. They cannot be copied, used to create derivation work or used for any reason, by means without the express, written permission of the copyright owner. If prices are stated, they are netto unit-prices and any eventual tax(es) have to be added. The company is not responsible for any printing error in technical, price and/or any other data.

Tool specifications subject to change without notice.

www.osgeurope.com